
Why Go?

Gopher logo design by Renee French



Best mascot ever



Why not Go?

Gopher logo design by Renee French



Go is not always the best fit

● No full control over allocations
● Hard to write type-generic code
● Math/scientific code looks ugly (and is slow)
● Quite easy to re-engineer
● Can’t make you look overly smart, unlike C++



Dynamic code loading



Metaprogramming in Go

● interface{}
● Reflection
● Structure tags
● Runtime hacks

No 

metaprogramming



Embedded DSLs in Go



Functional programming in Go (1/2)

+ =



Functional programming in Go (2/2)

// Go:
func(x int) bool { return x > 10 }

// Kotlin:
{it > 10}

// Haskell (with currying):
> 10



Syntax-sensitive personality

Quoted imports
Reversed decls

“:=” operator

if err != nil



Scheduler is not preemptive

Real time processing?

Halting problem?



Fin
And by “fin” I mean “let’s begin”



One of the most friendly-oriented communities around



Go contribution workshops



Get involved!

● http://slack.golang-ru.com
● https://t.me/golang_events_nizhny
● https://golang-events-nizhny.github.io

● https://github.com/golang/go/wiki/Learn 

http://slack.golang-ru.com/
https://t.me/golang_events_nizhny
https://golang-events-nizhny.github.io/
https://github.com/golang/go/wiki/Learn


Very focused 
&

opinionated
Almost every aspect 

has established 
conventions



Self-sufficient 
toolchain ● Linker

● Assembler and disassembler
● Pprof
● Race detector
● Memory sanitizer
● Doc generation (godoc)
● Coming soon: vgo



Frameworks 
out of the box

● Benchmarking
○ CPU profiling (clocks)
○ Memory (allocs) profiling

● Testing
○ Unit tests
○ Runnable example tests
○ Coverage reporting



2004-today
Portable binaries that work on most machines of 

the same architecture



Go compiler and runtime are written in Go



Go source code 
manipulation

Go stdlib includes 
packages for parsing and 
generating Go code, like 
go/ast, go/parser, 
go/types and others.

This is why we have so 
many linters and other Go 
tools.



Experiment?
Both Go and Rust were experiments, but 

“experimentation” is done differently



2012-today
No major language changes since 1.0 

(well, almost)



Main feature
*thinking dots*



Go is boring
Yes, this is an important feature. 

More boring slides ahead.



Low-level programming in Go

Package “unsafe”

CGoAssembly



Type system

● Static (all expressions have static types)
● Strong (no implicit conversions)
● Flat (no hierarchies / inheritance)
● Separate data and behavior



Error handling

● “error” is a built-in interface
● 99% of Go code uses consistent {T, error} API
● Panic can be used to unwind (with care)
● Simple to reason about and to check statically



Go is about minimalism

● Few overlapping language features
● Very few compiler flags
● No DRY-centric culture (simplicity is preferred)
● Everything is optimized for 80/20 rule



Less is more
Exponentially



Too simple?
Go is simple, but not too much.
Think of “simple, yet pragmatic”



Read the FAQ manual! (Polite RTFM)

 
https://golang.org/doc/faq 

https://golang.org/doc/faq


golangshow podcast


